Data Quality Framework | CONFIDENTIAL

DATA QUALITY
FRAMEWORK

Dimensions • Rules • Scoring • Remediation • Governance

Version 1.0 | January 2026

Table of Contents

1. Data Quality Dimensions
Data quality is measured across multiple dimensions. Understanding these dimensions enables comprehensive quality assessment and targeted improvement efforts.
1.1 Core Dimensions
	Dimension
	Definition
	Example Check

	Completeness
	Required data is present
	Null count < 1%

	Accuracy
	Data matches real-world values
	ZIP matches state

	Consistency
	Data agrees across systems
	Source = target count

	Timeliness
	Data is current and available
	Loaded within SLA

	Uniqueness
	No unintended duplicates
	PK is unique

	Validity
	Data conforms to rules
	Email format valid

1.2 Healthcare-Specific Dimensions
1. Referential Integrity: Member ID exists in member table
1. Domain Validity: Diagnosis codes in valid ICD-10 list
1. Temporal Consistency: Service date <= paid date
1. Cross-field Validation: LOB + product combination valid

2. Quality Rules
2.1 Rule Categories
	Category
	Description
	Example

	Schema
	Structure validation
	Column exists, type match

	Null Check
	Required fields populated
	member_id IS NOT NULL

	Range Check
	Values within bounds
	age BETWEEN 0 AND 120

	Pattern Check
	Format validation
	SSN matches XXX-XX-XXXX

	Reference Check
	FK relationships
	provider_id in dim_provider

	Business Rule
	Domain logic
	claim_amt <= allowed_amt

2.2 Rule Definition Template
Rule: R001_MemberID_NotNull
Dimension: Completeness
Table: fact_claims
Column: member_id
Condition: member_id IS NOT NULL
Severity: Critical
Threshold: 100%
Action: Block load if fails

3. Implementation in Fabric
3.1 Quality Check Notebook
Data Quality Checks in PySpark
from pyspark.sql.functions import col, count, when, isnan, isnull

def check_completeness(df, column, threshold=0.99):
 total = df.count()
 non_null = df.filter(col(column).isNotNull()).count()
 completeness = non_null / total
 passed = completeness >= threshold
 return {
 'rule': f'completeness_{column}',
 'score': completeness,
 'passed': passed
 }

def check_uniqueness(df, columns):
 total = df.count()
 unique = df.select(columns).distinct().count()
 return total == unique

Run checks
results = []
results.append(check_completeness(claims_df, 'member_id'))
results.append(check_completeness(claims_df, 'claim_amount'))
3.2 Quality Results Table
CREATE TABLE quality.dq_results (
 run_id STRING,
 run_timestamp TIMESTAMP,
 table_name STRING,
 rule_name STRING,
 dimension STRING,
 score DECIMAL(5,4),
 threshold DECIMAL(5,4),
 passed BOOLEAN,
 failed_count BIGINT,
 total_count BIGINT
)

4. Quality Scoring
4.1 Scoring Model
Quality Score Calculation:

Dimension Weights:
 Completeness: 25%
 Accuracy: 25%
 Consistency: 20%
 Timeliness: 15%
 Uniqueness: 15%

Table Score = Σ (Dimension Score × Weight)
Domain Score = Average of Table Scores
4.2 Score Thresholds
	Score
	Rating
	Action

	95-100%
	Excellent
	No action required

	90-95%
	Good
	Monitor, minor improvements

	80-90%
	Fair
	Remediation plan required

	< 80%
	Poor
	Immediate action, escalate

5. Remediation Process
5.1 Issue Categories
1. Source Issues: Fix at source system
1. Transformation Issues: Fix ETL logic
1. Data Entry Issues: User training, validation
1. Integration Issues: Mapping corrections
5.2 Remediation Workflow
1. Detection: Quality check identifies issue
2. Classification: Categorize by severity/type
3. Assignment: Route to appropriate team
4. Investigation: Root cause analysis
5. Resolution: Implement fix
6. Verification: Re-run quality checks
7. Closure: Document and close issue
5.3 Quarantine Pattern
Quarantine failed records
valid_df = df.filter(col('member_id').isNotNull())
invalid_df = df.filter(col('member_id').isNull())

Write valid to target
valid_df.write.mode('append').saveAsTable('gold.claims')

Write invalid to quarantine
invalid_df.write.mode('append').saveAsTable('quality.quarantine_claims')

6. Best Practices
6.1 Implementation Guidelines
1. Define rules collaboratively with business
1. Start with critical tables and expand
1. Automate checks in pipelines
1. Store historical quality metrics
1. Set realistic thresholds
1. Review and update rules regularly
6.2 Governance
1. Assign data stewards per domain
1. Document all quality rules
1. Establish SLAs for remediation
1. Report quality metrics to leadership
1. Include quality in data contracts
6.3 Quality Checklist
1. ☐ Quality dimensions defined
1. ☐ Rules documented per table
1. ☐ Automated checks in place
1. ☐ Scoring model implemented
1. ☐ Remediation process defined
1. ☐ Monitoring dashboard created
1. ☐ Stewardship assigned

Appendix: Document Information
	Document Title
	Data Quality Framework

	Version
	1.0

	Last Updated
	January 2026

Page of
